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MAXIMUM POSSIBLE ERROR IN POSITION
IN A LEAST SQUARES ORBIT

R. G. Langebartel

SUMMARY

A second order theory is developed for the problem of determining the
maximum possible error in position if a Keplerian orbit is fitted by least squares
to a set of observational data under the condition that the sum of the squares of
the distances between the true and observed positions be held constant. A re-
sult of the first order theory is that the maximum error at any one position in
the orbit occurs when the observed positions coincide with the least squares
computed positions. This doesn't remain true in the second order theory.

Application of the second order theory is made in detail to the case of cir-
cular orbits.
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MAXIMUM POSSIBLE ERROR IN POSITION
IN A LEAST SQUARES ORBIT

R. G. Langebartel

INTRODUCTION

A pertinent problem in orbit determination theory is the gauging of the effect
of observational data errors. One approach, suggested by Dr. B. Kruger, is to
investigate the nature of the distribution of errors that gives rise to the maxi-
mum error in one predicted position. That is the problem considered here for
the case of two-dimensional Keplerian motion where it is assumed the computed
orbit is an ellipse fitted to the observational data by least squares. This least
squares ellipse is, of course, a specialized curve fit in that it takes into account
the special parameterization of the ellipse (with respect to time) peculiar to
Newtonian two-body motion. As constraint in the maximum problem it is assumed
that the sum of the squares of the distances between the observed and true posi-
tions is a constant. No other assumption on the 2rrors is made.

THE LEAST SQUARES ORBIT

The elements of the true elliptic orbit in the plane are the semi-major axis
a, the eccentricity e, the angle of perigee p, and the instant of perigee passage
z. The elements for the least squares orbit are indicated by the corresponding
Greek letters: a, €, 7, and {. Position in the true orbit is given by the polar
coordinates r (distance) and f (angle), position in the least squares orbit by o
and ¢. The direction from one focus as the origin from which angles are meas-
ured is arbitrary but fixed throughout the discussion. The functional relations

r(a,e,p,z) {p:p(a,e,w,{) (1.1)
P=¢(x€,m L)

f_M
e s e}
oo

f(a,e,p,2)




are those of the Newtonian theory:

( r=a(l -ecos g) ( p=a(l-ccosy)
4 cos (f -p) =ar~1 (cos g -e) cos (p-7) =ap~! (cosy - €)
s =VEa~¥2(t - z) et oty
L s-g-esing L oc=y-€siny

Thus,s and g are the mean and eccentric anomalies, respectively, for the true
orbit, ando andy are those for the least squares orbit. The gravitational para-

meter . is the product of the gravitation constant by the sum of the masses of
the two bodies.

The least squares orbit is defined by requiring «, €, 7, and { to be so
chosen as to minimize the sum of the squares of the distances between the
observed and computed positions. Suppose that positions have been observed
at n + 1 different instants of time and let these observed positions be denoted
by (r.,f ), k=0,1,...,n Consequently, the function to be minimized is

P2

i}

Z (7§ + PR - 27, 7 cos ¢y - 8- (1.3)

k=0

Introduce the notation

bIEa IBIEQ
b, =e B, =€

J 7 (1.4)
b3§p ,83577

L b, =z \'845;

The function P2 is a function of the 3, through the variables o, and ¢, . Hence
the four equations of condition for the least squares orbit are

1 9P2 Z" ) " 3o . - 39,
EalBi = 4 {['Ok'_ r, cos (fk—cpk)] 35i = I, f sin (fk—(pk) B_ﬁi :-0-(1.5)
=0

The solving of these equations determines 3; in terms of the quantities ;k and

£, -




2. THE MAXIMUM PROBLEM

We wish to ascertain what distribution of errors in the observational data
will bring about the greatest discrepancy between the true and least squares
computed positions at the kth instant, t,, if we impose the constraint that the
sum of the squares of the distances between the true and the observed positions,
i.e. the sum of the squares of the errors, is held constant. That is to say, we
are to maximize

W2=124+p2-2r p cos (f -¢) (2.1)
subject to the side condition

Q2 = E {rlf +12-2r 1 cos (f - fk)} =c2. (2.2)
k=0

The problem is to determine the values of ;k and §k that make W2 a maximum.
The variables o, and ¢, in W2 are to be regarded as functions of ?k and f, by
virtue of (1.5) and (1.2). It should be noted that s, g,o,y vary with t so we
write

( r, =a(l ~ecosg) ( P, =a(l - €cos )
cos (t, -p) =ar}! (cos g -e) cos (@, -7) =ap~l(cos % -€)
< < (2.3)
s, =Vpa"3/2 (t, -2) o, =Va™¥2 (¢, - 0)
Sy =g -esing O =% —€siny,.
. .

The fundamental equations for the isoperimetric problem are

dp 99 - -
[pk_rkcos((pk-fk)] k+rkpksin(cpk-fk) _:k_.+>\[rm—rmcos(fm—fm)]=0

r ar,

3p, X - A
e, -1, cos (¢, - f,)] X + 1, o, sin (¢, -£,) —:k—+>\ [r r sin(f -f )] =0
L of of




where A is the Lagrange multiplier.

A more compact form for the equations involved results if we introduce

the notation

8, =p, -r . cos (¢ -f)
D =1y A sin (- £)
61( = f'k -r,_cos (fk -£)
(2.4)
¢ =r, 1, sin (f, - f)
6 =p, -1, cos (¢ -f)
® =1, p sin (¢ - f).
The necessary conditions for a maximum thus have the form
3
P o9 ~
8 —+8 —+AE =0,
or_ or_
< m=01,-+"-,n. (2.5)
9p 99 o
S +@ —+A 3 =0,
. of, " of,

The dependence of o, and ¢, on ?m and Em has been specified by the least
squares equations of condition (1.5). Use can be made of (1.5) if we write (2.5)

in the form

4

3

izl

f

4

i=1

L

B
2l

9h, of |25

+ @ +AO =0
a'Bi ka'Bii'BFm "
(2.6)
30, ¢, 95 N
X! LiAd =0
3ﬁi+kaﬁi]a%+ "

and then use (1.5) to eliminate 34, /3t and 38 /3f .




The equation (1.5) is

and upon differentiation with respect to Pm

(& 3.
Z Gji ~1 :Hjm’
i=1 arm
5 i=1,2,3,4
Gj; —— =K,
L i=1 afm
where
( & 32, . R 3@ 3p
G = Z ek k "y k 8, k
L 3B, 25, 3B, 38, aﬁi 38,
=0
- 9P, o,
< H, =cos (f -¢) 5B, + p, sin (f - )8,8
.- 3
g ijz_rmsm(fm )3,8 +r P, €OS (f -9)
Upon introduction of the matrices
90, 3p, 99,
34, 38, 38,
o6 °F -
3B CY:
9P, 90, 39,
98, 98, ’ CIA

k=0

9p

n .- . »a(P
> lasr-ask]-o

and with respect to fm

B&)k acpk
+
3f, Bﬁj

m

3B,

J

(2.7)

this becomes

(2.8)

(2.9)



3
90y aZk
3,81 1
’acpk
%P _ .
98
g
8,84 A
8,81 ’aﬁl
o 3f, af
8?0 Brn
3B _
9B =
ot
8 35, A
° —_— —_
aIB4 . “4 afo Bfn
or, ar_
® (2.10)
~o _ ~o . ® )’
~ ~ ~ ’ = ((I)O’ , ]
0=(0, 0,, , 9)
3p, Bcpk)
acp —£+(b - [
a,OE B_C@Z (Gk'a_plf'+®ka_16>]'(’ ’®kaﬁ4 ka,84
Pk E®k 8/3 k aB aﬁl )
Gy '0}4
G =
G,y *Gayf
Hyo “H,
H=
H40 . H4n ,




=
]

we have for (2.6) and (2.8)

J (2.11)

(2.12)

Evidently the necessary condition for a maximum now has the form

-1 "':
PG 1H+AB=0 .13

P,G1K+Ad=0

These equations are highly non-linear in the ?m and fm and recourse must be
had to some approximation procedure. Suppose that the functions involved are
expandable in powers of a variable &':




(
P =P(D € 4P €2,

O=01¢F &2 ez,
3

(D € L 2 2

(2.14)

+

- ﬁ G=G® + GV E 4 G &2

H :H(O) +H(1) 8 +H(2) 82

-+

K=K(® K E 4 K2 E2 4 ...

A=Al LA € L A2 E2 4 e,
.

Note from (2.4) and (2. 10) that if the observed positions coincide with the true
positions, P, , ®, and & all vanish (which is, of course, in conflict with the
constraint Q? = c? if ¢ >0). If € is a parameter such that the observed con-
figuration becomes the true conﬁguratmn when € vanishes then the constant
terms in the expansions of P, @) , and @ must all be zero as is indicated in
(2.14). Inview of the parenthetmal statement above we must also have c¢ and
€ vanishing simultaneously. Actually, we shall ultimately take € to be a mul-
tiple of ¢ but this specialization is not necessary now. It is only required at
this point that the vanishing of £ bring about the coincidence of the observed
positions with the true positions.

We need the expansion of the matrix G~1.

G l=F(O L FDE L F2)E2 4
AGGTl =T = (GO + G E 4G E2 4 -y (FO y FD ELFD L2 4 -0y,

=GO F(O 4 (GO F(D L gL ROy E 4 - -

This shows that

Gl =F(0) _ R0 gL RO & ; -+
-1 ¥ (2.15)
F(o) :G(O)




The substitution of (2.14) and (2.15) into (2.13) leads after some matrix algebra
to the infinite system of equations

P{D F(O) H(O 4 (O oL =0
(2.16)
P{ F(O) K(O) 4 A0 &Y =9

Pl((l)F(o)H(l) - pél)F(O)G(l)F(O)H(O) + P]((2)F<°)H(°) £ MO E2) A HD =g

P(D F(O) K(1) _ P(D F(O) G F(OIK(O) | P(2) (O K(O) 4 ANOF2) L A(DFD =0

(2.17)

3. THE FIRST ORDER THEORY

The particular character of the first order equations (2.16) rests on the
manner in which the low order terms in the expansions of fm s £ o and
@, are involved. Since € has been specialized to the extent that r,-r_, 0, ~T,,
f,-f.,p ~f,asf~0andk=0,1,...,n, the expansions are written as

ek
n

R IOR:IICON-C I

(3.1)
§k:fk+fl(<1)8+fl({2)82+._,
pk:rk+/0‘((1)8+/o1((2)82+"'

(3.2)
Cpk:fk+cp£1)€+cpl((2)82 o
Further,
(dp, Or, dp, |V 3o, |
= + €+ | — €2 4 - ..
9B ab ~ L9p 28
9 (3.3)
Ie) of ) (1) 3 (2)
P _ k+[¢k] 8+[_CPE] £2 4 . un
Laﬁ b 94 28




where

—k
’abl Bbl
Jf
_ } or, 2k I o
- 3b
3b
Brk Bfk
3b4 8b4

and

® =6 € 4 @2 €2 4 - -

@ =0 E 4D E2 4 -

(3.4)

The first few terms in the expansions of the quantities appearing explicitly in
(2.13) are easily obtainable and in particular we find

(1) (1)81{ (l)afz (1)arE 2 (1) af:
P = —_— —_—= _— —_—
e TET S R ST A S e 5

n

T -1
(0 = Z Brk ’ar§+r23fk afk
- 3b b k 3b 93b

k=0

0 . n

Bbl Bbl

o) =9F - :
ob .

Bro Brn

Bb4 Bb4

10




of of
2

r r
0 9b, " 9b,
of . .
(0) = 22— = . .
K (r 'ab) . . (3'5)
3f, o f
P20 ... r2 =2
3b4 Bb4

e :X%l) = (;61)’ cee ;r(‘l))
FD :)‘(gl) R = (r2 f(()l), cee, 12 Er(.l))

where

xgl) = (r, fQ L. r_ i-:r(ll))

There will also be needed the expansions of the least square elliptic orbit
parameters. Upon writing

8, b, B
8= b= B = (3.6)
5/ b,/ g
we have
B=b4+B1)E B2 E2 4 - (3.7

11




Now

( pr— —
4 4
o(1) = d oy - E ﬁ d_ﬁ‘ - E &/@(1):5(19&
k d€ Jg_, 3B, d€|g., ab, "1 9b
= L..i=1 1 = i=1 1
3 , S (3.8)
d 2, 9, dgj. *of df
Q1 = i = 2% 45, = E oL gL = gt K
8 d€ Je., . 3B, d€ e, . ob; * ob
L Ll»:l ] izl

Consequently, there is the alternative expression for Pl((”:

dr, orT of JfT
P‘(‘l):IB(l)T< k k2 X “>. (3.9)

3b 9b 'k 3b b

it is apparent that there is still needed the relation between S(Jand r(1),
£, This relation results from the lead off term in the expansion of (1.5), the
equation of condition for the least squares orbit, in conjunction with (3.8). The
coefficient of € in (1.5) when set to zero gives an equation which when rear-
ranged has the form

= drf )1 3 fT = “e1 or] ) ey o fT
2: AV Sy R 5y ) T Z: Ui 5y ) 810

k=0 k=0

And so the required relation between A1) and (1), (1) ig afforded by

n a T T n T - afT
AT °or _iﬂzﬁ of) . 21y Ok sr2 fO —K ) 311y
3b 3b 'k 3b 3b k' 3p Tk kT 3

k=0 k=0

The matrix R that appears in & is an encumbrance that can be made to dis-

appear from the equations (2.16) by the introduction of a new matrix J in place
of K9 where

12




3f of
°3p fa 3b,

J(O)E .
3f, 3f,
Y036, "3
4 4

Note that K@ = JOR with R non-singular, so that the equations (2.16) have
the form

P(1) F(O) H(O) 4 2(0) X (1) =
" HY 4+ X1 0 (3.12)

P{L) F(O J(O) 4 A0 X(D) = 0.

It may be noted that 3r, /3band r, 9f, /3b are the k+1 st columns of the
matrices H(®) and J (0 R respectlvely, whereupon there is suggested the notation

3r, 3f,

r, ——

3b, 3b,

r .
0) = __k _ = k _ .

HO) = = K =r, == _ (3.13)

3r, 3,

ob ’ k3pb

4 4

And it is convenient to combine these into one matrix:

Brk Bfk

"k 3pb

3b, .

X, :

YN (3.14)

Brk Bfk

b, k3pb

ob, 4

13




The matrix of these matrices likewise occurs and so we define

aro Bfo Brl Bfl Brn Bfn
3b. °3b. 3b. 13b.  3b. 'm"3b

1 1 1 1 1 1

3X_ ] ) o o
ab . . . . 3 . (3.15)
Bro ) Bfo Brl . 8_{_1....8% ] Bfn
0 1 n

3b4 3b4 8b4 3b4 8b4 8b4

Then

n

T T T T
G(O) = E (H(O HO' 4 J(O JCOTy = H(O H(O' 4 7(0) J(O) (3.16)

k=0
_§ 0 K 9X ox axT
3b 3b 3b 3b '’
k=0
39X, 3X!
P = DT _a_bi a_bk’ (3.17)
T -~ T
BT - XD HOT L XD JO) FO (3.18)

Thus the observed position coordinates as represented by the matrices f(il) and
X{1 must satisfy

(. T - T X, aXxT R
X(D HO' 4 XD 7Oy F(O) ’a_t:( _a_b‘iFw) H(® 4+ MO X(D =0

{ (3.19)
- - 9X, oXT -

L(Xgl) HO" + XD J(O)T) F(O) _aTk TbEF(o) JO 4 MO XD =0

This is an eigenvalue problem for the eigenvectors 5(%” , X41) and the
eigenvalue \(¥, Some information about the eigenvectors is readily obtained by
postmultiplying the first equation by H(®)", the second by J(®7, and subtracting
since these operations, if A\ # 0, result in

14




- T T -1 ~ T T -1
X§1) HO™ (H(O HO )" xgl) JCO (J€O) 3Oy " =0, (3.20)

This cannot be used by itself to solve for igl) in terms of igl) or vice versa if
n > 3 because H® andJ© are non-square and thus have no inverses.

The two matrix equations (3.19) represent 2n + 2 equations in the unknowns
;‘((1) s £{1 and so considerable complexity in the spectrum could be expected.
Fortunately, this is not the case as only two of the eigenvalues can be different
from zero. This circumstance arises essentially from the fact that 39X, /9b is
a non-square matrix. Let X = (X“) X(l)) i.e. a row matrix with 2n +2 elements,
and let L be the 2n + 2 X 4 matrix

H(®
( J(O)) .

Then the matrix A = LF(°)3X /3bis a 2n+2 x2 matrix and the eigenvalue
equation becomes simply

XAAT + MO X = 0.

The two columns of A may be regarded as the components of two vectors p

and q in avector space of 2n + 2 dimensions. The vectors orthogonal to both

p and q fill out a 2n-dimensional vector space. Let X, be any non-zero
vector in this 2n-dimensional space. Then X AAT=0AT =0 and so every
vector in this 2n -dimensional subspace is annihilated by AAT and is therefore
an eigenvector of this matrix with eigenvalue A(® = 0. Since the 2n -dimensional
space is spanned by 2n independent vectors the multiplicity of the zero eigen-
value is 2n. In the unlikely event that p and 4 are not independent but are non-
zero the vectors orthogonal to both P and q will fill out a space of 2n+1 dimen-
sions and the multiplicity of the zero eigenvalue in this case will be 2n+1.

Thus, in general, there are only two non-zero eigenvalues. The search for
these two eigenvalues is considerably simplified by reducing the eigenvalue
equation in X{ , XV to one 1nﬁ(1) This is accomphshed by postmultiplying the
first equatlon in (3 19) by HO the second by J@', and then adding and using
(3.18) and (3.16). This e1genva1ue equation for ,B(1>

(ax axT )\(O)G(0)> B =0
3b 9b - (3.21)

15




can be analyzed in the manner above to obtain the result that in this fourth

order system two of the eigenvalues are, in general, zero. The zero eigenvalues
correspond to the eigenvectors B(l) that are orthogonal to both columns of

3X, /3b, i.e., 3rT /3b B = r, 3T /3b S(V= 0. But this implies by (3.8)

that Pt = r, ¢f 1) =0 which 1n turn 1mp11es as we shall see later, that at least

to the f1rst and second order W = 0, indicating a minimum rather than a maximum.-

The eigenvalues are, of course, the roots of the determinantal equation
T
oX, oX 5 (0) 9X axT

< QCD, Sl 3.22
3b 3b b 9b 0 (3.22)

The eigenvalues are all real since 39X, /9b 3X] /ob and 3X/3b AXT/3b are
both symmetric with real elements [ref. 1, p. 306 ].

We now show that the original eigenvectors, X®, X, have a very simple re-
lationship to the o{17, 9D, If (3.20) is used in (3.18) there is obtained

-~ ~ T
BT - [X (D R + XD HO (HO H(OT)=1 (30 J(0)'y] F(O

= XD HOT | BT [HO BT 4 (0 J(OT] (o)

A -1 (3.23)
=X (D HOT (o) gy~ GO GO
= X (D H(OT ({(® gy
Similarly,
=1
T - T T
BAY = X(1) J(O <J(°) J(°)> . (3.24)
Hence,
R HOT = gT g0y g
1 (3.25)

(COl ICOLIITCORIN [CM RO

We cannot conclude from this alone that X{!’ = AT O ang XV = AT 300
since H(®) and J(®), being non-square for n > 3, have no inverses. However,
these formulae are 1ndeed true for eigenvectors correspondlng to non-zero
eigenvalues. We can conclude from (3.25) that X(l) is BT H(® except possibly
for an additive zero divisor of H(®)", That is, we can write

16




T ~
X1 = g1 HCO Y, Y HO -0,
where
-~ T ~
1) _ 1 0 0" _
xg)_5(>J(>+Y2, Y,J% =0

Substitute these into the eigenvalue equations (3.19) to give

(
‘axkaxT
T
(1y | —k &k p(0) (0) (0) (0) -0,
8 <ab abF A I>H PONSIR A

0 oxT
BT X KR LA 1) JO LAY =0,
b 2

But if )251),‘ ig” are eigenvectors then by (3.21)
X oXT
AT X K joy a0 1) =0,
b b
Therefore, if A\(%) ¥ 0, we must have Y, =Y, = 0 and, consequently,

R = g HO),

(3.26)
- T
R¢D = g7 3O,
This joins up with (3.8) to give the result that if A(9) %0,
£(1) = (1),
kT Pk (3.27)
(1) — (1
fl(( ) _cpl(( )

that is to say, for a maximum to occur the observed positions must coincide with
the least squares computed positions and therefore must fall along a Keplerian
ellipse (though not, in general, the true orbit). This property, to be sure, is a
consequence of the first order theory. As we shall discover later, it does not
carry over to the second order theory.

17




Nothing has been said so far about the normalization of the eigenvectors. The
size of the eigenvectors is regulated by the side condition Q? - ¢2, Before we
can determine its effect we must decide on the variation of ¢ with £. We choose

C

- " 7 7 - a vrn ; 1

Since the lead off term in the expansion of Q? is

the eigenvectors must satisfy

s - T ~ - T
RO RO L RO = a2 (n 4 1). (3.29)

The vector g(1)is governed accordingly. Working with (3.26) we find

T T
RO DT KH RO = g HO </3<1>T H<0>> ACIEPRI (C)) <5<1>T J-<0))
= BT O HOT g1y, gT o) joF sy
= DT GO g,

Consequently, S is normalized by

T 9X 9XT
(1)" 22 22 3(1) = a2 (n 4+ 1). 3.30
B 3B 3 a® (n + 1) ( )

The maximum squared distance between the k + 1 st true point and the k +1 st
least squares computed point is

W2 =12y o2 -2r p cos (f -q)

2 2
<p£1> b 12 (D) )82 .

[(@(I)T H]g°>> <5<1>T H]<(0>>T ; <5<1>T Jl((0)> (ﬁ(l‘)T J£0>>T] €2 4. ..

18
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1"

T T T
A (ngm H(O' 4 (0 3(0) ) g e, L

r 3X, X,
= D —= aa_/3(1)82+.... (3.31)

This can be expressed in terms of the eigenvalue X(?) by seeing from (3.21) that

T
T T
(1)y" kK _k p5(1) _ _»(0) g(1)" G(0) 5(1)
9b 9b A A P
and this in turn is -A(%) a2 (n+1 ) by (3.30). Hence, an alternative form for
w? is
W2 = A0 2, L., (3.32)

4. THE SECOND ORDER THEORY

Pushing the analysis to the second order consists essentially in treating the
set of equations (2.17). The following matrices will be needed in the work:

v(2) = ro(2 ~(2)
R = (7, ..., F)
$(2) = £(2 £(2
X2 = (r £, .o £02)
rYe! Q1
f(().) r(1)
R f¢D X FD
v = " 0 R(D = v 0 (4.1
0 21 0
n

19




20



Then

& =x@ Ly ym
17ty %2 (4.2)

B2 R = X 4+ X(D VD

(o - [221®
9B

K® = O g = ( [a_cﬁ](l) R+ 2 of ﬁ(l)j R
L ] 9b

9 = o
® = g go' @ 77 X |25
G® =HY H +J0 ] t3% [ il (4.3)

T T
PO = KD + o HO' + 1, 92 IO

A

T

P T’ 2 o BrT JfT
AP = p [_@} + 12 oM [—-?3} e r, (p(l) — + 1, oD e £ .
g 33 3B 2 3b 9b

Also, from (3.17) and (3.21) we get
T
P{D) = = A(9) g1 GO, (4.4)
The fundamental second order equations (2.17) thus have the form

4 T T
2O O O 4 AO gOT GO FO HO 4 AO FOHO + HD o + JO r ¢P)FO H©®

O (i§2> + % X m \7(1)) + A BOTHO = o

T T T T
EPXONCONE (ORSNONON ¢t FO J© +Aé1) FO JO (H‘((O) pl((2) +Jl(c0) r, (Pl((2)) F©O j©

L+ A XD + XD VW) L A® g0 JO = g (4.5)

These equations involve two sets of second order unknowns, 0(2) 9@ and X<2)
X(2) besides the eigenvalue perturbation AV, In order to obtain the necessary
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further relations among these we note first that

@ 1 [LA -1 d_Z“:aﬁd_’B‘
T Gl T2|dE L 5B dF g

i=1

=0

Z 5 kg Z Zab > AL B

with a similar formula for @122) , and that

d9p, Or 3 ?r
koK, kB gy
3B, b, 2 :Bb.ab. j
i To1 j i

so that

4 2 (1)
_&5(1) _| 25 :
3b. 3b, 3 3.

. ] 1 1

The connectionbetween o{?’,¢{?) and the orbital elements is thereupon seen to
be, in matrix form,

f

ap (1)
T k
'Ol(<2) —_-18(2) H1.(<0) + = 5(1) [5—7‘;}

(4.6)

3 (1)
5 (2)_5<2> J 4+ L 5<1>T r, [_&] .

To complete the connection of p(2), (2) with X(2) X(2) we need now the relation

between 8® and x<2> X(2) Th1s relat1on resides in the least squares equation
of condition (1.5) Wthh when expanded to the second order, gives

AT GO = XD g 4 X2 JOT 4 q,

- /5(1) [3_5.](1) oxT (4.7)
38 3b
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the counterpart to (3.18). We note further from (4.6) that

9X, oXT
T 2 T_ T k k
AP HD 4r B J(O = D = = -
< (4.8)
dE, (D 3x
0 ;_lgnT[_l] —k
L k 2 3B 3b

This enables us to remove pﬁz), cpé'*’) from (4.5) in favor of 5, thereby giving

( (2) BX BXT ©) gO® O x (@
BT 5 S FOHO A0 X

=A@ T HO _ (@ gD" GO FO FO - AD FO HO 40 FO HO
12, T
2oy tyvq@ 1) _\Q(1 1 0) =
A<>2xg>v<> AW SO HO =TT

4.9

5(2) BX BXT ) 70 )} (2) ( !
—* “kpO O L \O X
3b  3b

T T
SPNONONE (O DNONOR ¢[00 FOJO _ A‘((l) FO J© +Qk FO 7O

L _Mmg@§a>,un5mTﬂmsn

The unknowns X(®, x(2) can be eliminated from these equat1ons to leave an equa-
tion in5® alone by postmu1t1p1y1ng these two equations by HO" and J©7 | re-
spectively, adding, and using (4.7). The resulting equation is

9X, 9XT
g <33k' =+ A G<°>> =T, HOT T, JOT 40, a10)

the counterpart to (3.21). Since A? has already been chosen so as to make the
determinant of the coefficient of 3@ vanish, the number A(» , which is present
in TI; and II,, must be chosen so as to make the rank of the augmented
matrix equal to that of the coefficient matrix. After this has been done, (4.10)
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can be solved for 5(2). If, on the other hand, 5?) is removed from (4.9) by the
use of (4.7) there are displayed equations from which X{?>, X{?)can be obtained.

A simple relation exists between X(2> and X(2) a relatlon derivable by
multiplying the flrst equation of (4.9) by H(O)T (H(°) H(°>T)

, the second by
JOT (30 (0T "and subtracting. It is

X( HO" HO) HOT)=1 - XD [T (7(0) j(0)Ty-1
T 1 -~ T T _ T T _
=W [(HD® —EJ(O) VYHO® (HO gO y-1 _ (JDOD -HO vy 7O (7O 7O y=17

(4.11)
This is evidently the counterpart of (3.20).

The coefficient of € in the expansion representing the constraining equation
(2.2) is

n

- - - - 1 - a2
DGO D ¢ IO AD 4 ] n O IO
k=0

so that we must have
-~ -~ T -~ -~ T 1 ~ ~ -~
1 2 1 2 1 1 D\T -
X{D X{2 XD X+ XD XD V)T = 0 (4.12)

which is for the second order theory what (3.29) is for the first. The cor-

responding equation for 3 results from the application of (3.26) and (4.7) to
(4.12). We find that

p@T 2X XT gy 5<1> X [aa
3b

X —ﬁ'] 5(1>+ AT O O HOT s = ¢ (4.13)

the counterpart to (3.30).

A similar computation leads to the expression for W2,
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2 2 2
W2 = (o1 + 12 g1 €2 4 (2081 o) 4+ 272 g1 @D 41 pfD) {17y E3 4.

39X, OXT
:ﬁ(l)T __).(_“. _)EE B g2
b  3b
X, 9XT 3 g T
32827 Xy —k gy, gDT X | B A1)
3b  3b 3b [ 38
T - T
+ BT IO £ H(O /3“>} E3 4 - e, (4.14)

Note that the coefficient of £3 (as well as that of £2 ) vanishes if &1)' 3X,/3b= 0
which occurs for A\(9) = 0. Thus the vanishing of the eigenvalue causes the vanish-
ing of W2 through terms in &3 at least.

5. KEPLERIAN FORMULAE

The work of the last two sections is independent of the type of orbit involved.
All that is required is that the orbit depend in a well-behaved fashion on four
parameters (the extension to any number of parameters is immediate). In the
case of two-dimensional Newtonian two-body motion the parameter dependence
is given by (1.2). From these the fundamental quantities appearing in the for-
mulae of the preceding sections are easily computed. The column matrices
H(?> and J(® are

-1 3. :
a rk-a—ark esksmgk

-acos (f, -p)
H(®) = o (5.1)

-vVpal’2 171 e sin g, ,
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a1 /T-els
2k k

[a + 1, (1 -e?)71] sin (f, - p)
0 = (5.2)

-VEal2 it /T e

The matrices H(®) and J(°) are 4 xn+ 1 and have the elements of H(°) and
J 1((0)' respectively, as their k + 1 columns.

Let Gg?) represent the element in the it" row and jt" column of the 4 x 4
matrix G(9), Then

n
Ggg) = E [a‘2 r2-3es, sing +%a r;l(2-a"lr) sﬁ],
k=0

G{3 = (- 3a%r ls, sing -1, cos (f, -p)],
k=0
n
0) — 3
G{3) = E [-Ea 1-e sk],
k=0
n
Gig) = [-/7/, al/2 e sing +%//__Lal/2 r;l (2-alr) Sk]’
k=0
n
Ggg) = [a2 4 a2 {2ar;1 +(1 - e?)71} sin? gk] ,
k=0

n

G(0) = Z lar, + 52 (1 - e0y1) sin (£, - p),

k=0
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G{9) = [-2Vua¥? 1! sin g,
k=0
n
0) _ 2
G{3) = z Ty
k=0

Ggg) — Z [_‘/;al/2 ]/1_62],

k=0

n

G{0) - Z [pa™ 17t (22 - 1)) . (5.3)

k=0

This determines all the elements of G® sinceG©® is symmetric.

If we suppose that the observations are made at equal intervals in time then
the summations with respect to k that are present in the formulae for G{?)can
be replaced by summations of a different sort. This is accomplished by
employing the Fourier series expansions in s for the various orbital quanti-
ties, since then the original summation index k will occur only on the variable
s and will appear only as a simple factor. The sum over k is then accom-
plished through the use of the following series which represent the complex
geometric series and its first two derivatives:

d n

Zl:n+1

k=0

n

D, Z k:%n(n+1)

k=0

) K=gnm+D @nsD
. o
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(" n

cos pkd = csc -l—pH sin2* 1p6 cos 2p¢9
2 : 2 2 2
k=0

n

7 E kcospk@:ncscf%p@ sinZ ; 1 po cos %p@ﬂ

k=0
1,1
D -z ¢s¢ Epﬁ [(n +1) =n cos pf - cos npb]
(5.4)
n
E k2 cos pk6 = n? csc Lpé’ sin 2% 1 p6 cos = pb
—— 2 2 2
-%csc2%p9 [(n +1) = n cos pf - cos npb]
+lcsc3 lp@ [h sin -1—p6’°(1 + cos npf) - sinnp b cos lp@}
- 4 2 2 2
(" n
sin pkéd = csc lp@ sin 2+ 1 po sin Epé’
k=0 2 2
n
Z k sinpkf =n csc-1—p6 sin 2% 1 po sinﬂp@
[_ 2 2 2
1,1 . o8]
-z ¢s¢ Epﬁ [n sin pf - sin np
L2
E k? sin pké = n? csc%pe sinn;'lpe sin%pé’
k=0
n 2 1 . . .
~-—csc?2 = pf [n sin pb - sin npf]
4 2
1 51 1 1 ;
L +-4-csc -é-pé’ n31n.2.p<951nnp9+cos§ pf-(cos npf - 1) |.
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Let X be one of the quantities connected with the orbit. Its Fourier expansion
in terms of the mean anomaly s is of the form

[+ ]
X =A+ Z (a, cosps, +b_sin Ps,.) (5.5)

p=1

where s, is the value of s at the k +1st instant: s, =vu a3/2(t_-z). The con-
stants A, a_, b _are all independent of k. We are assuming the observations

P’ "p .
are made at equal intervals in time and so we write

s, = k6 -® (5.6)

where 6 = V1 a”3/27, ® =V1a™3/2 z , and 7 is the interval (in time) between
successive observations. Then the Fourier expansion of X, becomes

®

X =A 4 Z {[ap cos pB -b_ sin p8] cos pkd

p=1

+[a  sinp® +b_ cos pB] sin pk@}. (5.7)

For the elements of G(9) werequirethe sum of X over k together with its
first two moments. In forming this finite sum we add the Fourier series term
by term, a process justified bv the fact that the Fourier series converge for all
values of s. [ ref. 2, p. 210 ]. The result is, upon using (5.4),

©

n
E X =(n+1) A+ E cscé—p&sinn;lpe(ap cospsn/2+bp Sinpsn/Z)
k=0

p=1

where s, is the value of the mean anomaly at the instant t=(n/2)7. Ina

similar fashion we can compute the first two moments. The formulae are
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X, =(mn+ DA+ E Dl()o) (a, cosps_, + b, sinps_ ),

k=0 p=1

n n [+ ]
Z 5K = Sar2 2 : X + 0 Z DD (a, sinps, , -b, cosps )
k=0 k=0 p=1

% (5.8)
Zsixk:(§2—2s§/2) Z X, +2s_, Z s X,
k=0 k=0 x=0

[o4]

+ 62 E Dx(’z) '(ap cos ps_,, + bp sin psn/2)

=1
\_ P

where

1 .. n+1
D(®) = —pb 6,
b csc2p sin 2 P

D(I)Elcscz-l-pﬁ-(n sinlpG cosn+1p9-sin2p9),
p 2 2 2 2 2
4 (5.9)
Dr(a2) E%csc3 %—p@- [n2 sin2%p9 sinn;1p9+n sin%p@-(cos%p@cosn+1},9
1 n
2cos2pf) -3cos=phsinpd],
L +2coszp ) coszp sxnzp]
_n
Sn/2 =56‘®’

(5.10)

52 51(31‘6:392 —né® 4 @2

In order to use these formulae to obtain representations for the elements
of G(%)we need to know A, a, b, the coefficients in the Fourier expansions
for the various quantities connected with the true orbit. These expansions are

known [ref. 2, p. 205] and the particular ones we require are given in the
following table:
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X A a bP
sing 0 Y in (pe)
ep
1 2 1
cos g -3¢ > I, (pe) 0
1 1
; a(t+ge) 225 o) 0
rol a’l 2a™! Jp (pe) Y
2
r2 a? (l +% ez) —i?— Jp (pe) Y
p?
) 2(1 - &%) 0
f - - -
cos (f - p) e = J, (P
sin (f - p) 0 0 21 -€*J° (pe)
r cos (f - p) -—ae 2—aJl (pe) 0
p e
/ 2
r sin (f - P) 0 0 ii.:_e_.]p (pe)
ep
sin? g 1 - 4P—d-— L J_ (pe) 0
2 d(pe) [pe P
rlsing 0 0 2a7! J; (pe)
_ " 2
2 sin (f - p) 0 0 a? /T & [iii‘iJ o)+ 2 1 (pe)]
ep P p2 P
-1 . 2 1 - - 82 = 1 1 ]
r! sin? g R 1 2a7! [—;3— J, (pe) t=2 I, (pe) 0

is the Bessel function of the first kind and pth order,

In these formulae J (2)
P

and J;(z)

natives to (5.3) we have

9
6= men (14362493

2

@®

~

)

is its derivative with respect to the argument, z. Then, as alter-

E (0) =2
-4 Dp ol Jp (pe) cos PS, /,

p=1

o]

‘65,,/2 2 D](,O)P-1 Jp (pe) sinps_,, +98§2 E Dl(:o) Jp (pe) cos PS, /,

p=1
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[ «©

b op E 1 .
+66 Z D}() ) p!t Jp (pe)cosps ,, + 18 Sn/26 D;() >Jp (pe) sinps_

p=1 p=1
-0
o ) , . o S
+9 § DE)Jp(pe) COS PS_ s
p=1
@ [e 0]
3
(0) _ 0 =1 0 I} .
G{O -5(n+1) ae - E Dn(: ) 2ap J;(pe)cospsn/2-6asn/2 E D;(> )Jp(pe) sinps_
p=1 p=1

oo}

+6ad E Df)l)];(pe)cospsn/z,

p=1

3 7/
G§g>:'§a 1-e2(n+1) Sh/2

e8]

3 - - - - .
Ggg) :-2-1/Za /2(n 4+ 1) S, /2 -2 Vip a”172 E Dgo)p 1Jp (pe) sinps_,,
p=1
+6Vpat/?s > D{®) J (pe)cosps, ,+6Vua /20 E D{DJ (pe) sinps
p=1 p=1
5 - 4e? - - e2)? 2
GO =mana 3= 4 TD("’ PA-eD"+15 (pe) + L2 =P 1t (pe)| cosps, ,.
2(1-¢e%) — e2(1-eHp e(l-e?)p ©
432 .
(0) — 0) 52 ! i
G(Y = E Dr(> )p Jp (pe) sinps_ ,, (5.11)

[es]

(0) - - o) 7 i
G 4V al/ E DIV J (pe) sinps_ ),

p=1
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fod]

3 -
0) _ 2 2 2 0 2
G =(n+1)a <1+§e> - 4a 2 D% p~2 J (pe) cos ps_ ,,
p=1
Ggg):_/ﬁalm\/l-ez(n-;-l),
fe o]
0) _ -1 -1 E 0
Gg4)#(n+1)ua + 4ua D;)Jp(pe)COSPSn/f_,-

p=1

The factors Jp (pe) and J' (pe) inthe summands in these series bring
about quite rapid convergence. In fact, these factors are both positive decreas-
ing functions of p [ ref. 3, p. 254 ] and, moreover,

2
J, (pe) £ (2mp)™1 /2 (1 - )71/ exp [p (/1___& - log 1o e >:l ,

e
(5.12)
v 2
J! (pe) S (2mpe?) 12 (1 + )1 exp {p (‘ 1-c?_logltil-e ﬂ :

e

which shows that the convergence is exponential inasmuch as the coefficient of
p in the argument of the exponential functions in (5.12) is negative for 0 < e < 1.
If e is very small the first term in the series for GE?) serves as a good
approximation for the series. Besides this only a small extra error will be
introduced if I, (e and J; (e) are replaced by (1/2)e and 1/2, respectively,
since the error terms are 0(e3) and 0(e?) , respectively.

The quantities occurring in the second order theory for the maximum
problem depend to a great extent on the second derivatives of r and f with
respect to the orbital parameters. In a straightforward computation these are
found to be

= =" alel-e)125gin(f ~p) +%ar'2es2 cos (f - p),

2y _ N?2r
b, abl“ae da

- - cos (f—p)—%az 25 /1 - 2 sin (f - p),
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2y _ ?r _
3b, b,  Ip 3a

?r _ dr
- 31)4"?3b1_32735

%/;I a 32 e(l -2 5jn (f =p) +

?r ANy

—Ez_:z: a2r7! ya(l - e?)71] sin? (f - p),
b de

2
2y R?r

db, Bb2 dp de

r o’r Vi a3/2 2 2 o
= = - V1 - f - p),
3b, b, 9z de patt iVl - et sin (f -p)

82r_ ?r
3b3  op?
2 r Rr

= =0,
b, ob, 9z op

2
E = pur 2 e cos (f - p),
ob?
4
3?2 -
—szr 25V1 - e? --gar"3 es? sin (f - p),
abf 4 2
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Vi al/?2 r"2 es cos (f -p),



2
o°f 3ar_3 s(1 -e®71/2 [re - 2a(l -e?) cos (f -p)J,

Bb25bl 2
?2f
ab38b1
2
L:E\/;a’l/z 1’3 [rvl1-e?-2aessin(f-p)],
8b48b1 2
2 - .
a_f:{a2 r2cos(f-p)+larli(l-e)1]2cos (f-p)+2e(l-e?) 2} sin(f -p),
b2
2
2
_f o,
5b3 ab2
P 1/2 -3 2\~1/2 2
=V al/? 73 (1 - e?) [re - 2a(1 -e?) cos (f -p)],
8b45b2
2
f o,
2
ab3
2
_of o,
3b45b3
2
o 2uresin(f-p).
Bbi
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In the work leading to the expressions (4.6) for p(?>andro(2)there are the
relations

(" . 4
o 2] ZE: Ar gy
o 98, 3b, ob,
i=1

< (5.13)

4
-a—cﬂ(l): Z 32¢ IB(I)
95, __, b, 3b, i

\ =1

showing the connection of the second derivatives of r and f with the matrices
occurring in section 4. Indeed, with 3(1)determined in a particular case from
the first order theory and with [3p/38,](Dand [3¢/38,1(1) computed with
the aid of (5.13) and the above second order derivative formulae all matrices

are computable that are needed in (4.10) so that this equation may be solved
for () and \ (1),

6. CIRCULAR ORBIT

In the case of a circular orbit the eccentricity is zero and the angle of perigee
and instant of perigee passage become indeterminate. Thus, in dealing with cir-
cular orbits we have only to consider the radius, a. Consequently, such matrices
asH(®Dand G(Dwhich are4x (n + 1)and 4 x 4 in the two~-dimensional elliptic orbit
case become 1 x (n + 1) and 1 x 1 in the two-dimensional circular orbit case.

The true circular orbit is defined by

r

a

(6.1)
f :‘/_#a'3/2 t

and it is on these formulae that the matrices occurring in the maximum problem
are based. In particular,
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(CH( =(1,1,1, ..., 1)

(0 =_%/;a-3/2 7(0, 1,2 .., n)

oX

k 3 -

— (1, -2V 3/2k) .
J 50 ( 2 ©a T (6.2)

%g': (1, 01 1» ’%‘/_/J'a-S/z Ty o0 0y 17 -%‘/_/J‘a-s/z nT)

G =(n +1) [1 +%/J, a3n(2n+1) 72:|

The position at the k + 1st instant in the least squares circular orbit is
determined by

(D = H(®) a(1) = a(D)

(6.3)
oD = _%\/ﬁa(x) 572 kr

which were computed from (3.8) and (6.2). The first order Langrange multiplier,
A(9), is found from (3.22) and (6.2) to be

A0 = (1 + g—pa':’ k2 7'2) (n + D1 |:1 +%;¢a'3 n(2n + 1) 7'2] , (6.4)

but the one-dimensional eigenvector A(1)=a®is not determined by the equation
(3.21) precisely because the matrices involved are 1 x 1. That is to say, the
only freedom for the direction of 3®) is that afforded by the sign of 5’ and this
is left unspecified by (3.21). The magnitude of f®) is, however, another matter
and it is found from (3.30):

~1/2
B =all) = 4 a [1 +%#a-3 n(2n + 1) 72]

Probably the most satisfactory way of representing the maximum value of
W2 is in terms of the true anomaly, f. By (3.32), (6.4), and (6.1) we obtain for
the maximum value of the squared distance between the k +1st true point and the
k 4 1st least squares computed point (to the first order)
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9 32n+1 5\
we (1e30) (3] e,

(6.5)

Toget an idea of the size of this we note that ifk =nand f =1 radian withn

regarded as la}rge W2 is approximately 2¢2/(n+1). = . _

In extending the work to include the second order terms we need the follow-

ing basic results:

( -
l:alok(l)
4]

1y
l:aqg‘j 15 a2 g gy
4

35
J H(Y = (0, 0,0, ..., 0)=0-H®
3 _ 1 -
JC :Z/;a(l) a2 70, 1,2, ...,n)= —Ea(l)a 1700

G - -%n(n +1) (2n 4+ 1) pa™® (1) 72

AL = 22 a0 g4 g2 2
L e

(6.6)

The second order terms in the least squares computed position at thek + 1 st
instant are then available from (4.6)